5 Punkt Einfach Symmetrisch Gleitender Durchschnitt


Gleitende Mittelwerte Gleitende Mittelwerte Mit herkömmlichen Datenbeständen ist der Mittelwert oft die erste und eine der nützlichsten, zusammenfassenden Statistiken, die berechnet werden. Wenn die Daten in Form einer Zeitreihe vorliegen, ist das Serienmittel eine nützliche Maßnahme, spiegelt aber nicht die dynamische Natur der Daten wider. Meanwerte, die über kurzgeschlossene Perioden berechnet werden, die entweder der aktuellen Periode vorangehen oder auf die aktuelle Periode zentriert sind, sind oft nützlicher. Weil solche Mittelwerte sich ändern oder sich bewegen, wenn sich die aktuelle Periode von der Zeit t & sub2 ;, t & sub3; usw. bewegt, werden sie als gleitende Durchschnittswerte (Mas) bezeichnet. Ein einfacher gleitender Durchschnitt ist (üblicherweise) der ungewichtete Durchschnitt von k vorherigen Werten. Ein exponentiell gewichteter gleitender Durchschnitt ist im Wesentlichen derselbe wie ein einfacher gleitender Durchschnitt, aber mit Beiträgen zum Mittelwert, der durch ihre Nähe zur aktuellen Zeit gewichtet wird. Da es keine einzige, sondern eine ganze Reihe von gleitenden Mittelwerten für eine beliebige Reihe gibt, kann der Satz von Mas selbst auf Graphen aufgetragen, als Serie analysiert und in der Modellierung und Prognose verwendet werden. Eine Reihe von Modellen kann mit gleitenden Durchschnitten konstruiert werden, und diese werden als MA-Modelle bekannt. Wenn solche Modelle mit autoregressiven (AR) Modellen kombiniert werden, sind die resultierenden zusammengesetzten Modelle als ARMA - oder ARIMA-Modelle bekannt (die I ist für integriert). Einfache gleitende Mittelwerte Da eine Zeitreihe als ein Satz von Werten betrachtet werden kann, können t 1,2,3,4, n der Mittelwert dieser Werte berechnet werden. Wenn wir annehmen, daß n ziemlich groß ist, so wählen wir eine ganze Zahl k, die viel kleiner als n ist. Können wir einen Satz von Blockdurchschnitten oder einfache Bewegungsdurchschnitte (der Ordnung k) berechnen: Jede Messung repräsentiert den Mittelwert der Datenwerte über ein Intervall von k Beobachtungen. Man beachte, daß das erste mögliche MA der Ordnung kgt0 dasjenige für tk ist. Allgemeiner können wir den zusätzlichen Index in die obigen Ausdrücke schreiben und schreiben: Dies bedeutet, daß der geschätzte Mittelwert zum Zeitpunkt t der einfache Mittelwert des beobachteten Wertes zum Zeitpunkt t und den vorhergehenden k -1 Zeitschritten ist. Wenn Gewichte angewandt werden, die den Beitrag von Beobachtungen verringern, die weiter weg in der Zeit sind, wird der gleitende Durchschnitt als exponentiell geglättet. Gleitende Mittelwerte werden häufig als eine Form der Prognose verwendet, wobei der Schätzwert für eine Reihe zum Zeitpunkt t 1, S t1. Wird als MA für den Zeitraum bis einschließlich der Zeit t genommen. z. B. Die heutige Schätzung basiert auf einem Durchschnitt der bisherigen aufgezeichneten Werte bis einschließlich gestern (für tägliche Daten). Einfache gleitende Mittelwerte können als eine Form der Glättung gesehen werden. In dem nachfolgend dargestellten Beispiel wurde der in der Einleitung zu diesem Thema gezeigte Luftverschmutzungs-Datensatz um eine 7-tägige gleitende Linie (MA) ergänzt, die hier in Rot dargestellt ist. Wie man sehen kann, glättet die MA-Linie die Spitzen und Täler in den Daten und kann sehr hilfreich sein, um Trends zu identifizieren. Die Standard-Vorwärtsberechnungsformel bedeutet, dass die ersten k-1-Datenpunkte keinen MA-Wert haben, aber danach rechnen sich die Berechnungen bis zum Enddatenpunkt in der Reihe. PM10 tägliche Mittelwerte, Greenwich Quelle: London Air Quality Network, londonair. org. uk Ein Grund für die Berechnung einfacher gleitender Mittelwerte in der beschriebenen Weise ist, dass es Werte für alle Zeitschlitze von der Zeit tk bis zur Gegenwart berechnet werden kann, und Wenn eine neue Messung für die Zeit t 1 erhalten wird, kann die MA für die Zeit t 1 zu dem bereits berechneten Satz addiert werden. Dies bietet eine einfache Vorgehensweise für dynamische Datensätze. Allerdings gibt es einige Probleme mit diesem Ansatz. Es ist vernünftig zu argumentieren, dass sich der Mittelwert der letzten 3 Perioden zum Zeitpunkt t -1, nicht zur Zeit t, befinden sollte. Und für eine MA über eine gerade Anzahl von Perioden vielleicht sollte sie sich in der Mitte zwischen zwei Zeitintervallen befinden. Eine Lösung für dieses Problem besteht darin, zentrierte MA-Berechnungen zu verwenden, bei denen der MA zum Zeitpunkt t der Mittelwert einer symmetrischen Menge von Werten um t ist. Trotz seiner offensichtlichen Verdienste wird dieser Ansatz nicht allgemein verwendet, weil er erfordert, dass Daten für zukünftige Ereignisse verfügbar sind, was möglicherweise nicht der Fall sein kann. In Fällen, in denen die Analyse vollständig aus einer bestehenden Serie besteht, kann die Verwendung von zentriertem Mas bevorzugt sein. Einfache gleitende Mittelwerte können als eine Form von Glättung, Entfernen einiger Hochfrequenzkomponenten einer Zeitreihe und Hervorhebung (aber nicht Entfernen) von Trends in einer ähnlichen Weise wie der allgemeine Begriff der digitalen Filterung betrachtet werden. Tatsächlich sind die gleitenden Mittelwerte eine Form eines linearen Filters. Es ist möglich, eine gleitende Durchschnittsberechnung auf eine Reihe anzuwenden, die bereits geglättet worden ist, d. h. Glätten oder Filtern einer bereits geglätteten Reihe. Zum Beispiel können wir mit einem gleitenden Mittelwert der Ordnung 2 die Berechnungen unter Verwendung von Gewichten betrachten, so daß die MA bei x 2 0,5 x 1 0,5 x 2 gilt. Ebenso ist die MA bei x 3 0,5 x 2 0,5 x 3 Eine zweite Glättungs - oder Filterstufe anwenden, so haben wir 0,5 x 2 0,5 x 3 0,5 (0,5 x 1 0,5 x 2) 0,5 (0,5 x 2 0,5 x 3) 0,25 x 1 0,5 x 2 0,25 x 3, dh die zweistufige Filterung Prozess (oder Faltung) einen variabel gewichteten symmetrischen gleitenden Durchschnitt mit Gewichten erzeugt hat. Mehrere Windungen können sehr komplexe gewichtete gleitende Durchschnittswerte erzeugen, von denen einige speziell in Spezialgebieten, wie etwa in Lebensversicherungsberechnungen, gefunden wurden. Bewegungsdurchschnitte können verwendet werden, um periodische Effekte zu entfernen, wenn sie mit der Länge der Periodizität als bekannt berechnet werden. Zum Beispiel können mit monatlichen Daten saisonale Schwankungen oft entfernt werden (wenn dies das Ziel ist), indem Sie eine symmetrische 12-monatigen gleitenden Durchschnitt mit allen Monaten gleich gewichtet, mit Ausnahme der ersten und letzten, die mit 1 gewichtet werden Beträgt 13 Monate im symmetrischen Modell (aktuelle Zeit, t - 6 Monate). Die Gesamtzahl wird durch 12 geteilt. Ähnliche Verfahren können für jede wohldefinierte Periodizität angenommen werden. Exponentiell gewichtete Bewegungsdurchschnitte (EWMA) Mit der einfachen gleitenden Durchschnittsformel werden alle Beobachtungen gleich gewichtet. Wenn wir diese Gleichgewichte, alpha t. Jedes der k Gewichte würde 1 k betragen. So dass die Summe der Gewichte würde 1, und die Formel wäre: Wir haben bereits gesehen, dass mehrere Anwendungen dieses Prozesses in die Gewichte variieren führen. Bei exponentiell gewichteten Bewegungsdurchschnitten wird der Beitrag zum Mittelwert aus mehr zeitlich entfernten Beobachtungen verringert, wodurch neuere (lokale) Ereignisse hervorgehoben werden. Im wesentlichen wird ein Glättungsparameter 0lt alpha lt1 eingeführt und die Formel überarbeitet: Eine symmetrische Version dieser Formel würde die Form haben: Wenn die Gewichte im symmetrischen Modell als die Ausdrücke der Terme der Binomialdehnung ausgewählt werden, (1 21 2) 2q. Sie summieren sich auf 1, und wenn q groß wird, nähert sich die Normalverteilung. Dies ist eine Form der Kerngewichtung, wobei das Binomial als Kernfunktion dient. Die im vorigen Teilabschnitt beschriebene zweistufige Faltung ist genau diese Anordnung, wobei q 1 die Gewichte ergibt. Bei der exponentiellen Glättung ist es notwendig, einen Satz von Gewichten zu verwenden, die auf 1 summieren und die geometrisch verkleinern. Die verwendeten Gewichte haben typischerweise die Form: Um zu zeigen, daß diese Gewichte zu 1 summieren, betrachten wir die Erweiterung von 1 als Reihe. Wir können den Ausdruck in Klammern schreiben und erweitern, indem wir die binomische Formel (1- x) p verwenden. Wobei x (1) und p -1, was ergibt, ergibt sich daraus ein gewichtetes gleitendes Mittel der Form: Diese Summation kann als Rekursionsrelation geschrieben werden, was die Berechnung stark vereinfacht und das Problem vermeidet, daß das Gewichtungsregime Sollte strikt unendlich sein, damit die Gewichte auf 1 summieren (für kleine Werte von Alpha ist dies typischerweise nicht der Fall). Die von verschiedenen Autoren verwendete Schreibweise variiert. Einige verwenden den Buchstaben S, um anzuzeigen, daß die Formel im wesentlichen eine geglättete Variable ist, und schreiben: während die kontrolltheoretische Literatur oft Z anstelle von S für die exponentiell gewichteten oder geglätteten Werte verwendet (siehe z. B. Lucas und Saccucci, 1990, LUC1) , Und die NIST-Website für weitere Details und bearbeitete Beispiele). Die Formeln, die oben zitiert wurden, stammen aus der Arbeit von Roberts (1959, ROB1), aber Hunter (1986, HUN1) verwendet einen Ausdruck der Form, die für die Verwendung in einigen Kontrollverfahren geeigneter sein kann. Bei alpha 1 ist die mittlere Schätzung einfach ihr gemessener Wert (oder der Wert des vorherigen Datenelements). Bei 0,5 ist die Schätzung der einfache gleitende Durchschnitt der aktuellen und vorherigen Messungen. In Prognosemodellen wird der Wert S t. Wird oft als Schätzwert oder Prognosewert für die nächste Zeitperiode, dh als Schätzung für x zum Zeitpunkt t 1, verwendet. Somit haben wir: Dies zeigt, dass der Prognosewert zum Zeitpunkt t 1 eine Kombination des vorherigen exponentiell gewichteten gleitenden Durchschnitts ist Plus eine Komponente, die den gewichteten Vorhersagefehler darstellt, epsilon. Zum Zeitpunkt t. Wenn eine Zeitreihe gegeben wird und eine Prognose erforderlich ist, ist ein Wert für alpha erforderlich. Dies kann aus den vorhandenen Daten geschätzt werden, indem die Summe der quadrierten Prädiktionsfehler mit unterschiedlichen Werten von alpha für jedes t 2,3 ausgewertet wird. Wobei der erste Schätzwert der erste beobachtete Datenwert x ist. Bei Steueranwendungen ist der Wert von alpha wichtig, da er bei der Bestimmung der oberen und unteren Steuergrenzen verwendet wird und die erwartete durchschnittliche Lauflänge (ARL) beeinflusst Bevor diese Kontrollgrenzen unterbrochen werden (unter der Annahme, dass die Zeitreihe eine Menge von zufälligen, identisch verteilten unabhängigen Variablen mit gemeinsamer Varianz darstellt). Unter diesen Umständen ist die Varianz der Kontrollstatistik: (Lucas und Saccucci, 1990): Kontrollgrenzen werden üblicherweise als feste Vielfache dieser asymptotischen Varianz festgelegt, z. B. - 3-fache Standardabweichung. Wenn beispielsweise & alpha; 0,25 angenommen wird und die zu überwachenden Daten eine Normalverteilung N (0,1) haben, werden bei der Steuerung die Steuergrenzen - 1,134 und der Prozess eine oder andere Grenze in 500 Schritten erreichen im Durchschnitt. Lucas und Saccucci (1990 LUC1) leiten die ARLs für eine breite Palette von Alpha-Werten und unter verschiedenen Annahmen unter Verwendung von Markov-Chain-Prozeduren ab. Sie tabellieren die Ergebnisse, einschließlich der Bereitstellung von ARLs, wenn der Mittelwert des Kontrollprozesses um ein Vielfaches der Standardabweichung verschoben worden ist. Beispielsweise beträgt bei einer 0,5-Verschiebung mit alpha 0,25 die ARL weniger als 50 Zeitschritte. Die oben beschriebenen Ansätze sind als einzelne exponentielle Glättung bekannt. Da die Prozeduren einmal auf die Zeitreihe angewendet werden und dann Analysen oder Steuerprozesse auf dem resultierenden geglätteten Datensatz durchgeführt werden. Wenn der Datensatz einen Trend und / oder saisonale Komponenten enthält, kann eine zweidimensionale oder dreistufige Exponentialglättung angewendet werden, um diese Effekte zu entfernen (explizit modellieren) (siehe weiter unten im Abschnitt "Prognose" und im Beispiel von NIST) . CHA1 Chatfield C (1975) Die Analyse der Zeitreihen: Theorie und Praxis. Chapman und Hall, London HUN1 Hunter J S (1986) Der exponentiell gewichtete gleitende Durchschnitt. J von Qualität Technologie, 18, 203-210 LUC1 Lucas J M, SACCUCCI M S (1990) Exponentially Weighted Average Steuerschemata bewegen: Eigenschaften und Verbesserungen. Technometrics, 32 (1), 1-12 ROB1 Roberts S W (1959) Kontrolltests auf der Grundlage geometrischer Bewegungsdurchschnitte. Techno, 1, 239-250Time Reihenanalyse: Der Prozess der saisonalen Anpassung Was sind die beiden wichtigsten Philosophien der Saisonbereinigung Was ein Filter Was der Endpunkt Problem ist, ist Wie entscheiden wir, welche Filter zu verwenden, was eine Verstärkungsfunktion ist Was a Phasenverschiebung Was Henderson Mittelwerte bewegen Wie gehen wir mit dem Endpunkt Problem umgehen Was saisonale gleitende Durchschnitte sind Warum Trend Schätzungen angepasst sind, wie viel Daten erforderlich ist akzeptabel saisonbereinigt Schätzungen zu erhalten Advanced Wie die beiden saison~~POS=TRUNC Philosophien vergleichen, was sind die beiden MAIN PHILOSOPHIES OF SEASONAL ANPASSUNG Die beiden wichtigsten Philosophien für saisonale Anpassung sind die Modell-basierte Methode und die Filter-basierte Methode. Filterbasierte Methoden Diese Methode wendet einen Satz von festen Filtern (gleitende Mittelwerte) an, um die Zeitreihen in eine Trend-, Saison - und unregelmäßige Komponente zu zerlegen. Der zugrunde liegende Gedanke ist, dass die Wirtschaftsdaten aus einer Reihe von Zyklen zusammengesetzt sind, einschließlich der Konjunkturzyklen (der Trend), saisonale Zyklen (Saisonalität) und Lärm (die unregelmäßige Komponente). Ein Filter entfernt im Wesentlichen die Stärke bestimmter Zyklen aus den Eingangsdaten. Um eine saisonbereinigte Reihe von monatlich gesammelten Daten zu erzeugen, müssen Ereignisse, die alle 12, 6, 4, 3, 2.4 und 2 Monate auftreten, entfernt werden. Diese entsprechen saisonalen Frequenzen von 1, 2, 3, 4, 5 und 6 Zyklen pro Jahr. Die längeren nicht-saisonalen Zyklen gelten als Teil des Trends und die kürzeren nicht-saisonalen Zyklen bilden die unregelmäßigen. Jedoch kann die Grenze zwischen dem Trend und den irregulären Zyklen mit der Länge des Filters variieren, der verwendet wird, um den Trend zu erhalten. In ABS saisonale Anpassung sind Zyklen, die erheblich zur Tendenz beitragen, in der Regel größer als etwa 8 Monate für monatliche Serien und 4 Quartalen für vierteljährliche Serien. Der Trend, saisonale und irreguläre Komponenten brauchen keine expliziten individuellen Modelle. Die unregelmäßige Komponente ist definiert als das, was nach dem Trend bleibt und saisonale Komponenten wurden durch Filter entfernt. Irregulars zeigen keine weißen Rauscheigenschaften. Filterbasierte Methoden werden oft als X11-Stilmethoden bezeichnet. Dazu gehören X11 (entwickelt von U. S. Census Bureau), X11ARIMA (von Statistics Canada entwickelt), X12ARIMA (entwickelt von U. S. Census Bureau), STL, SABL und SEASABS (das von der ABS verwendete Paket). Computational Unterschiede zwischen verschiedenen Methoden in X11 Familie sind vor allem das Ergebnis der verschiedenen Techniken an den Enden der Zeitreihen verwendet. Beispielsweise verwenden einige Verfahren asymmetrische Filter an den Enden, während andere Verfahren die Zeitreihe extrapolieren und symmetrische Filter auf die erweiterte Serie anwenden. Modellbasierte Methoden Dieser Ansatz erfordert, dass Trend, saisonale und unregelmäßige Komponenten der Zeitreihe separat modelliert werden. Es geht davon aus, dass die unregelmäßige Komponente 8220weißes Rauschen8221 ist - das heißt, alle Zykluslängen sind gleich dargestellt. Die Unregelmäßigen haben Null-Mittelwert und eine konstante Varianz. Die saisonale Komponente hat ein eigenes Rauschen. Zwei weit verbreitete Softwarepakete, die modellbasierte Methoden anwenden, sind STAMP und SEATS TRAMO, die von der Bank von Spanien entwickelt wurden. Eine wesentliche Berechnungsunterschiede zwischen den verschiedenen modellbasierten Methoden sind in der Regel auf Modellvorgaben zurückzuführen, in manchen Fällen werden die Komponenten direkt modelliert Verfahren erfordern, dass die ursprünglichen Zeitreihen zuerst modelliert werden und die Komponentenmodelle daraus zersetzt werden. Für einen Vergleich der beiden Philosophien auf einer weiter fortgeschrittenen Ebene finden Sie unter Wie können die beiden saisonalen Anpassung Philosophien vergleichen WAS IST A FILTER Filter verwendet werden können Zerlegen Sie eine Zeitreihe in einen Trend, eine saisonale und irreguläre Komponente. Gleitende Mittelwerte sind eine Art von Filter, die nacheinander eine Verschiebung der Zeitspanne von Daten, um eine geglättete Schätzung einer Zeitreihe zu produzieren. Diese geglättete Serie kann als gewesen sein Abgeleitet durch das Ausführen einer Eingangsserie durch einen Prozeß, der bestimmte Zyklen herausfiltert, wird folglich ein gleitender Durchschnitt oft als ein Filter bezeichnet. Das grundlegende Verfahren beinhaltet das Definieren eines Satzes von Gewichten der Länge m 1 m 2 1 als: Anmerkung: Ein symmetrischer Satz von Gewichten hat m 1 m 2 und wjw - j. Ein gefilterter Wert zum Zeitpunkt t kann berechnet werden, indem Y t den Wert beschreibt Der Zeitreihe zum Zeitpunkt t. Betrachten Sie zum Beispiel die folgenden Reihen: Unter Verwendung eines einfachen 3-term-symmetrischen Filters (dh m 1 m 2 1 und aller Gewichte sind 1 3) wird der erste Term der geglätteten Reihe durch Anwenden der Gewichte auf die ersten drei Ausdrücke der Original-Serie: Der zweite geglättete Wert wird durch die Anwendung der Gewichte auf die zweiten, dritten und vierten Begriffe in der ursprünglichen Serie erzeugt: WAS IST DAS ENDPUNKT-PROBLEM Die Serie überdenken: Diese Reihe enthält 8 Begriffe. Jedoch enthält die geglättete Reihe, die durch Anwenden eines symmetrischen Filters auf die ursprünglichen Daten erhalten wird, nur 6 Ausdrücke: Das liegt daran, daß an den Enden der Reihe nicht genügend Daten vorhanden sind, um ein symmetrisches Filter anzuwenden. Der erste Term der geglätteten Reihe ist ein gewichteter Durchschnitt von drei Terme, der auf den zweiten Term der ursprünglichen Reihe zentriert ist. Ein gewichteter Mittelwert, der auf den ersten Term der ursprünglichen Reihe zentriert ist, kann nicht als Daten erhalten werden, bevor dieser Punkt nicht verfügbar ist. Ebenso ist es nicht möglich, einen gewichteten Mittelwert zu berechnen, der auf den letzten Term der Reihe zentriert ist, da keine Daten nach diesem Punkt vorliegen. Aus diesem Grund können symmetrische Filter nicht an jedem Ende einer Serie verwendet werden. Dies wird als Endpunktproblem bezeichnet. Zeitreihenanalytiker können asymmetrische Filter verwenden, um geglättete Schätzungen in diesen Regionen zu erzeugen. In diesem Fall wird der geglättete Wert 8216off centre8217 berechnet, wobei der Durchschnitt unter Verwendung von mehr Daten von einer Seite des Punktes als dem anderen gemäß dem, was verfügbar ist, bestimmt wird. Alternativ können Modellierungstechniken verwendet werden, um die Zeitreihen zu extrapolieren und dann symmetrische Filter auf die erweiterte Serie aufzubringen. WIE WIR ENTFERNEN, WELCHES FILTER ZU BENUTZEN Der Zeitreihenanalytiker wählt einen geeigneten Filter, der auf seinen Eigenschaften basiert, wie z. B. welche Zyklen der Filter entfernt, wenn er angewendet wird. Die Eigenschaften eines Filters können mit einer Verstärkungsfunktion untersucht werden. Verstärkungsfunktionen werden verwendet, um die Wirkung eines Filters bei einer gegebenen Frequenz auf die Amplitude eines Zyklus für eine bestimmte Zeitreihe zu untersuchen. Für weitere Informationen über die Mathematik, die mit Verstärkungsfunktionen verknüpft ist, können Sie die Time Series Kursnotizen, eine Einführung in die Zeitreihenanalyse, die von der Zeitreihenanalyse des ABS veröffentlicht wird, herunterladen (siehe Abschnitt 4.4). Das folgende Diagramm ist die Verstärkungsfunktion für das symmetrische 3-Term-Filter, das wir früher untersucht haben. Abbildung 1: Verstärkungsfunktion für symmetrische 3-Term-Filter Die horizontale Achse stellt die Länge eines Eingangszyklus in Bezug auf die Periode zwischen den Beobachtungspunkten in der ursprünglichen Zeitreihe dar. So ist ein Eingabezyklus der Länge 2 in 2 Perioden abgeschlossen, was 2 Monate für eine monatliche Serie und 2 Quartale für eine vierteljährliche Serie entspricht. Die vertikale Achse zeigt die Amplitude des Ausgabezyklus relativ zu einem Eingangszyklus. Dieser Filter reduziert die Festigkeit von 3 Periodenzyklen auf Null. Das heißt, sie entfernt vollständig Zyklen von etwa dieser Länge. Dies bedeutet, dass für eine Zeitreihe, in der Daten monatlich gesammelt werden, alle saisonalen Effekte, die vierteljährlich auftreten, durch Anwendung dieses Filters auf die ursprüngliche Serie eliminiert werden. Eine Phasenverschiebung ist die Zeitverschiebung zwischen dem gefilterten Zyklus und dem ungefilterten Zyklus. Eine positive Phasenverschiebung bedeutet, dass der gefilterte Zyklus rückwärts verschoben wird und eine negative Phasenverschiebung zeitlich verschoben wird. Eine Phasenverschiebung tritt auf, wenn das Timing der Wendepunkte verzerrt ist, zum Beispiel wenn der gleitende Durchschnitt von den asymmetrischen Filtern außermittig platziert wird. Das heißt, sie werden entweder früher oder später in der gefilterten Serie auftreten als im Original. Ungerade symmetrische Bewegungsdurchschnitte (wie sie vom ABS verwendet werden), bei denen das Ergebnis mittig platziert wird, bewirken keine zeitliche Phasenverschiebung. Es ist wichtig, dass Filter, die verwendet werden, um den Trend abzuleiten, die Zeitphase und somit den Zeitpunkt jedes Wendepunktes beizubehalten. Die 2 und 3 zeigen die Effekte der Anwendung eines 2 × 12 symmetrischen gleitenden Mittelwertes, der außerhalb der Mitte liegt. Die kontinuierlichen Kurven repräsentieren die Anfangszyklen und die unterbrochenen Kurven repräsentieren die Ausgangszyklen nach dem Anlegen des gleitenden Durchschnittsfilters. Abbildung 2: 24 Monats-Zyklus, Phase -5,5 Monate Amplitude 63 Abbildung 3: 8 Monatszyklus, Phase -1,5 Monate Amplitude 22 WAS HENDERSON MOVING sind Mittel Henderson Moving Averages sind Filter, die in versicherungsmathematischen Anwendungen für den Einsatz im Jahre 1916 von Robert Henderson abgeleitet wurden. Sie sind Trendfilter, die üblicherweise in der Zeitreihenanalyse verwendet werden, um saisonbereinigte Schätzungen zu glätten, um eine Trendschätzung zu erzeugen. Sie werden bevorzugt einfacheren gleitenden Durchschnitten verwendet, da sie Polynome bis zu Grad 3 reproduzieren können, wodurch Trendkurvenpunkte erfasst werden. Das ABS verwendet Henderson gleitende Mittelwerte, um Trendschätzungen aus einer saisonbereinigten Serie zu erzeugen. Die von der ABS veröffentlichten Trendschätzungen werden typischerweise unter Verwendung eines 13-term-Henderson-Filters für monatliche Serien und eines 7-term-Henderson-Filters für vierteljährliche Serien abgeleitet. Henderson-Filter können entweder symmetrisch oder asymmetrisch sein. Symmetrische Bewegungsdurchschnitte können an Punkten angewandt werden, die ausreichend weit entfernt von den Enden einer Zeitreihe liegen. In diesem Fall wird der geglättete Wert für einen gegebenen Punkt in der Zeitreihe aus einer gleichen Anzahl von Werten auf beiden Seiten des Datenpunkts berechnet. Um die Gewichte zu erhalten, wird ein Kompromiss zwischen den beiden Merkmalen, die allgemein von einer Trendreihe erwartet werden, erreicht. Dies ist, dass der Trend in der Lage sein, eine breite Palette von Krümmungen darstellen und dass es auch so glatt wie möglich sein sollte. Zur mathematischen Ableitung der Gewichte siehe Abschnitt 5.3 der Zeitreihen-Lehrveranstaltungen. Die von der ABS-Website heruntergeladen werden können. Die Gewichtungsmuster für einen Bereich von symmetrischen Henderson-Bewegungsdurchschnitten sind in der folgenden Tabelle angegeben: Symmetrisches Gewichtungsmuster für Henderson Moving Average Im allgemeinen gilt, je länger der Trendfilter ist, desto glatter der resultierende Trend, wie sich aus einem Vergleich der Verstärkungsfunktionen ergibt über. Ein 5-term-Henderson reduziert Zyklen von etwa 2,4 Perioden oder weniger um mindestens 80, während ein 23-Term-Henderson reduziert Zyklen von etwa 8 Perioden oder weniger um mindestens 90. In der Tat ein 23-Term-Henderson-Filter entfernt vollständig Zyklen von weniger als 4 Perioden . Henderson bewegte Durchschnitte dämpfen auch die Jahreszeitzyklen in unterschiedlichen Graden. Jedoch zeigen die Verstärkungsfunktionen in den 4 - 8, dass die jährlichen Zyklen in den Monats - und Quartalsreihen nicht signifikant genug gedämpft werden, um die Anwendung eines Henderson-Filters direkt auf ursprüngliche Schätzungen zu rechtfertigen. Aus diesem Grund werden sie nur auf eine saisonbereinigte Reihe angewendet, wo die kalenderbedingten Effekte bereits mit speziell entwickelten Filtern entfernt wurden. Abbildung 9 zeigt die Glättungseffekte der Anwendung eine Henderson zu einer Reihe filtern: Abbildung 9: 23-Term Henderson Filter - Wert der Nicht-Wohngebäude Zulassungen Wie gehen wir mit dem Endpunkt Problem zu lösen Die symmetrische Henderson Filter kann nur auf Regionen angewendet werden Von Daten, die ausreichend weit von den Enden der Reihe entfernt sind. Zum Beispiel kann die Standard-13-Term Henderson nur auf monatliche Daten angewendet werden, die mindestens 6 Beobachtungen vom Anfang oder Ende der Daten sind. Dies liegt daran, dass die Filterglätte der Serie, indem sie einen gewichteten Durchschnitt der 6 Begriffe auf beiden Seiten des Datenpunktes sowie den Punkt selbst. Wenn wir versuchen, es auf einen Punkt anzuwenden, der weniger als 6 Beobachtungen von dem Ende der Daten ist, dann sind nicht genügend Daten auf einer Seite des Punktes verfügbar, um den Durchschnitt zu berechnen. Um Trendschätzungen dieser Datenpunkte zu liefern, wird ein modifizierter oder asymmetrischer gleitender Durchschnitt verwendet. Die Berechnung von asymmetrischen Henderson-Filtern kann durch eine Anzahl verschiedener Methoden erzeugt werden, die ähnliche, aber nicht identische Ergebnisse liefern. Die vier Hauptmethoden sind die Musgrave-Methode, die Minimierung der Mittelwert-Revisionsmethode, die Methode der besten linearen unregelmäßigen Schätzungen (BLUE) und die Kenny - und Durbin-Methode. Shiskin et. Al (1967) die ursprünglichen asymmetrischen Gewichte für den Henderson-gleitenden Durchschnitt, die innerhalb der X11-Pakete verwendet werden. Für Informationen über die Ableitung der asymmetrischen Gewichte siehe Abschnitt 5.3 der Zeitreihen-Lehrveranstaltungen. Man betrachte eine Zeitreihe, bei der der letzte beobachtete Datenpunkt zum Zeitpunkt N auftritt. Dann kann ein 13-term-symmetrisches Henderson-Filter nicht auf Datenpunkte angewendet werden, die zu jedem Zeitpunkt nach und einschließlich Zeit N-5 gemessen werden. Für alle diese Punkte muss ein asymmetrischer Satz von Gewichten verwendet werden. Die folgende Tabelle gibt das asymmetrische Gewichtungsmuster für einen normalen 13-Term-Henderson-gleitenden Durchschnitt. Die asymmetrischen 13-term-Henderson-Filter entfernen oder dämpfen nicht dieselben Zyklen wie der symmetrische 13-Term-Henderson-Filter. Tatsächlich verstärkt das asymmetrische Gewichtungsmuster, das verwendet wird, um den Trend bei der letzten Beobachtung zu schätzen, die Stärke von 12 Periodenzyklen. Auch asymmetrische Filter erzeugen eine zeitliche Phasenverschiebung. WAS SIND SEASONAL MOVING AVERAGES Fast alle Daten, die vom ABS untersucht werden, haben saisonale Eigenschaften. Da die Henderson-Bewegungsdurchschnitte, die verwendet wurden, um die Trendreihen abzuschätzen, nicht die Saisonalität beseitigen, müssen die Daten saisonbereinigt zuerst mit saisonalen Filtern eingestellt werden. Ein Saisonfilter hat Gewichte, die im gleichen Zeitraum über die Zeit angewendet werden. Ein Beispiel des Gewichtungsmusters für eine saisonale Filter wäre: (1 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 3), wobei zum Beispiel ein Gewicht von einem Drittel auf drei aufeinanderfolgende Januars angewendet wird. Innerhalb X11, eine Reihe von saisonalen Filter zur Auswahl stehen. Dies sind ein gewichteter 3-Term-gleitender Durchschnitt (ma) S 3x1. Gewichtet 5-term ma S 3x3. Gewichtet 7-term ma S 3x5. Und eine gewichtete 11-term ma S 3x9. Die Gewichtungsstruktur gewichteter gleitender Durchschnitte der Form, S nxm. Ist, dass ein einfacher Mittelwert von m Ausdrücken berechnet wird und dann ein gleitender Durchschnitt von n dieser Mittelwerte bestimmt wird. Dies bedeutet, dass nm-1 Ausdrücke verwendet werden, um jeden endgültigen geglätteten Wert zu berechnen. Zum Beispiel, um ein 11-Term S 3x9 zu berechnen. Ein Gewicht von 1 9 wird für den gleichen Zeitraum in 9 aufeinander folgenden Jahren angewendet. Dann wird ein einfacher dreidimensionaler gleitender Durchschnitt über die gemittelten Werte angewendet: Dies ergibt ein endgültiges Gewichtungsmuster von (1 27, 2 27, 1 9, 1 9, 1 9, 1 9, 1 9, 1 9, 1 9, 2 27, 1, 27). Die Verstärkungsfunktion für einen 11-Jahres-Saisonfilter, S 3x9. Sieht wie folgt aus: Abbildung 10: Verstärkungsfunktion für 11 Term (S 3x9) Saisonfilter Die Anwendung eines saisonalen Filters auf Daten erzeugt eine Schätzung der saisonalen Komponente der Zeitreihe, da sie die Stärke der saisonalen Oberwellen und Dämpfungszyklen von nicht - Saisonale Längen. Asymmetrische saisonale Filter werden an den Enden der Serie verwendet. Die asymmetrischen Gewichte für jeden der in X11 verwendeten Saisonfilter finden Sie in Abschnitt 5.4 der Zeitreihen-Kursnotizen. WARUM SIND TREND ESTIMATES REVISED Am aktuellen Ende einer Zeitreihe ist es nicht möglich, symmetrische Filter zu verwenden, um den Trend aufgrund des Endpunktproblems zu schätzen. Stattdessen werden asymmetrische Filter verwendet, um vorläufige Trendschätzungen zu erzeugen. Wenn jedoch mehr Daten verfügbar sind, ist es möglich, den Trend unter Verwendung von symmetrischen Filtern neu zu berechnen und die anfänglichen Schätzungen zu verbessern. Dies wird als Trend-Revision bezeichnet. WIE VIELE DATEN ERFORDERLICH WERDEN KÖNNEN, DASS ANNEHMBARE SAISONAL EINSTELLTE SCHÄTZUNGEN ERGEBEN WERDEN Wenn eine Zeitreihe eine relativ stabile Saisonalität aufweist und nicht von der unregelmäßigen Komponente dominiert wird, dann können 5 Jahre Daten als akzeptable Länge betrachtet werden, um saisonbereinigte Schätzungen abzuleiten. Für eine Serie, die eine besonders starke und stabile Saisonalität aufweist, kann eine grobe Anpassung mit 3-jährigen Daten vorgenommen werden. Es ist im Allgemeinen bevorzugt, über mindestens sieben Jahre Daten für eine normale Zeitreihe zu verfügen, um saisonale Muster, Handelstage und bewegte Urlaubseffekte, Trend - und Saisonbrüche sowie Ausreißer präzise zu identifizieren. ERWEITERTE WIE KÖNNEN DIE ZWEI SEASONALEN EINSTELLUNGSPHILOSOPHIEN VERGLEICHEN Modellbasierte Ansätze erlauben die stochastischen Eigenschaften (Zufälligkeit) der zu analysierenden Reihe, in dem Sinne, dass sie die Filtergewichte auf der Grundlage der Art der Serie anpassen. Die Fähigkeit des Modells8217, das Verhalten der Reihe genau zu beschreiben, kann ausgewertet werden, und es werden statistische Schlussfolgerungen für die Schätzungen auf der Grundlage der Annahme zur Verfügung gestellt, dass die unregelmäßige Komponente weißes Rauschen ist. Filterbasierte Methoden sind weniger abhängig von den stochastischen Eigenschaften der Zeitreihen. Es ist die Zeitreihe analyst8217s Verantwortung, um die am besten geeignete Filter aus einer begrenzten Sammlung für eine bestimmte Serie zu wählen. Es ist nicht möglich, die Angemessenheit des impliziten Modells rigoros zu überprüfen und genaue Präzisions - und statistische Schlußfolgerungen sind nicht verfügbar. Daher kann ein Vertrauensintervall nicht um die Schätzung herum aufgebaut werden. Die folgenden Diagramme vergleichen das Vorhandensein jeder der Modellkomponenten bei den saisonalen Frequenzen für die beiden saisonalen Anpassungsphilosophien. Die x-Achse ist die Periodenlänge des Zyklus und die y-Achse die Stärke der Zyklen, die jede Komponente umfassen: Abbildung 11: Vergleich der beiden saisonalen Anpassungsphilosophien Filterbasierte Methoden gehen davon aus, dass jede Komponente nur bestimmte Zykluslängen aufweist. Die längeren Zyklen bilden den Trend, die saisonale Komponente liegt bei saisonalen Frequenzen vor und die unregelmäßige Komponente wird als Zyklen beliebiger anderer Länge definiert. Unter einer modellbasierten Philosophie sind der Trend, die saisonale und die unregelmäßige Komponente bei allen Zykluslängen vorhanden. Die unregelmäßige Komponente ist von konstanter Festigkeit, die saisonalen Komponentenspitzen bei saisonalen Frequenzen und die Trendkomponente am stärksten in den längeren Zyklen. Diese Seite wurde am 14. November 2005, zuletzt aktualisiert am 25. Juli 2008 veröffentlicht

Comments

Popular Posts